首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22462篇
  免费   2939篇
  国内免费   905篇
电工技术   3640篇
技术理论   1篇
综合类   1626篇
化学工业   1436篇
金属工艺   307篇
机械仪表   812篇
建筑科学   1379篇
矿业工程   129篇
能源动力   4141篇
轻工业   180篇
水利工程   105篇
石油天然气   85篇
武器工业   146篇
无线电   7614篇
一般工业技术   3136篇
冶金工业   165篇
原子能技术   85篇
自动化技术   1319篇
  2024年   18篇
  2023年   565篇
  2022年   553篇
  2021年   783篇
  2020年   860篇
  2019年   790篇
  2018年   718篇
  2017年   1088篇
  2016年   1190篇
  2015年   1217篇
  2014年   1625篇
  2013年   1469篇
  2012年   1788篇
  2011年   2290篇
  2010年   1451篇
  2009年   1365篇
  2008年   1286篇
  2007年   1335篇
  2006年   1199篇
  2005年   905篇
  2004年   653篇
  2003年   539篇
  2002年   452篇
  2001年   393篇
  2000年   322篇
  1999年   206篇
  1998年   232篇
  1997年   171篇
  1996年   159篇
  1995年   118篇
  1994年   132篇
  1993年   101篇
  1992年   57篇
  1991年   47篇
  1990年   41篇
  1989年   25篇
  1988年   24篇
  1987年   23篇
  1986年   16篇
  1985年   14篇
  1984年   21篇
  1983年   6篇
  1982年   16篇
  1981年   8篇
  1980年   4篇
  1979年   5篇
  1978年   7篇
  1977年   7篇
  1975年   3篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
1.
摘 要:为了提高码索引调制(code index modulation,CIM)系统的传输效率,提出了一种具有更低复杂度的单输入单输出(single input single output,SISO)的广义正交码索引调制(generalized orthogonal code index modulation,GQCIM)系统。CIM 系统使用扩频码和星座符号传输信息,但只能激活两个扩频码索引和一个调制符号。而 GQCIM 系统以一种新颖的方式克服了只激活一个调制符号的限制,同时充分利用了调制符号的正交性,增加扩频码索引以传输更多的额外信息位,提高了系统的传输效率。此外,分析了GQCIM系统的理论性能,推导了误码率性能的上界。通过蒙特卡罗仿真验证了GQCIM系统的性能,对比发现GQCIM系统的理论和仿真性能一致。而且在相同的传输效率下,结果显示GQCIM系统的性能优于同样具有正交性的调制系统,如广义码索引调制(generalized code index modulation,GCIM)系统、CIM系统、码索引调制-正交空间调制(code index modulation aided quadrature spatial modulation,CIM-QSM)系统、码索引调制-正交空间调制(code index modulation aided spatial modulation,CIM-SM)系统、脉冲索引调制(pulse index modulation,PIM)系统。  相似文献   
2.
Solar steam generation has attracted considerable interest due to its easy accessibility and sustainability. However, dye molecules were gradually concentrated on bulk water or the surface of solar absorbers during the disposal of dye wastewater. Herein, LaB6/g-C3N4 composites were immobilized on porous cotton cloth, served as a solar absorber resistant to dye clogging. The optimal solar absorber possessed solar harvesting of 92.3% and showed great application potential in the field of the treatment of dye wastewater. This study presented a new approach for the treatment of dye wastewater.  相似文献   
3.
The effects of particle size and carbon dioxide concentration on chemical conversion in engineered spherical particles undergoing calcium oxide looping are investigated. Particles are thermochemically cycled in a furnace under different carbon dioxide concentrations. Changes in composition due to chemical reactions are measured using thermogravimetric analysis. Gas composition at the furnace exit is evaluated with mass spectroscopy. A numerical model of thermal transport phenomena developed previously is adapted to match the physical system investigated in the present study. The model is used to elucidate effects of reacting medium characteristics on particle temperature and reaction extent. Experimental and numerical results show that (1) an increase in particle size results in a decrease in carbonation extent, and (2) the carbonation step consists of fast and slow reaction regimes. The reaction rates in the fast and slow carbonation regimes increase with increasing carbon dioxide concentration. The effect of carbon dioxide concentration and the distinction between the fast and slow regimes become more pronounced with increasing particle size.  相似文献   
4.
The design of polymer acceptors plays an essential role in the performance of all-polymer solar cells. Recently, the strategy of polymerized small molecules has achieved great success, but most polymers are synthesized from the mixed monomers, which seriously affects batch-to-batch reproducibility. Here, a method to separate γ-Br-IC or δ-Br-IC in gram scale and apply the strategy of monomer configurational control in which two isomeric polymeric acceptors (PBTIC-γ-2F2T and PBTIC-δ-2F2T) are produced is reported. As a comparison, PBTIC-m-2F2T from the mixed monomers is also synthesized. The γ-position based polymer (PBTIC-γ-2F2T) shows good solubility and achieves the best power conversion efficiency of 14.34% with a high open-circuit voltage of 0.95 V when blended with PM6, which is among the highest values recorded to date, while the δ-position based isomer (PBTIC-δ-2F2T) is insoluble and cannot be processed after parallel polymerization. The mixed-isomers based polymer, PBTIC-m-2F2T, shows better processing capability but has a low efficiency of 3.26%. Further investigation shows that precise control of configuration helps to improve the regularity of the polymer chain and reduce the π–π stacking distance. These results demonstrate that the configurational control affords a promising strategy to achieve high-performance polymer acceptors.  相似文献   
5.
《Ceramics International》2022,48(21):31478-31490
Considering the great importance of nanocomposite based photo-active nanomaterials for a variety of electronics, photonics and photovoltaics application, it is always worth considering to synthesize new hetreostructure. This paper describes the sol-gel and hydrothermal synthesis of metal (holmium, barium, and cadmium) doped TiO2/CdS nanocomposites for photoanode applications. Various characterization techniques, including XRD, FTIR, UV–VIS, EDX, and SEM were used to examine the synthesized heterostructures. The band gap of pure TiO2 NPs is 3.10 eV, which was effectively decreased to 2.16 eV by doping and coupling with CdS. The nanomaterial's crystallinity, crystallite size, morphology and elemental composition were determined by XRD, SEM and EDX, respectively. As sensitizers, the organic dyes dithizone, carminic acid, and pyrocatechol violet were used. FTIR was used to analyze the effective dye grafting on the surface of nanomaterials. In the presence of hole conducting P3HT polymer as solid state electrolyte, the sensitized materials were evaluated for solid state dye-sensitized solar cells. Compared to the reference device, Cd–TiO2/CdS photosensitized using Pyrocatechol violet dye demonstrated the highest efficiency of 2.68% (0.82%). Other parameters of this device, including open circuit voltage (Voc) and short circuit current (Jsc), were determined to be 16.97 mA cm2 and 0.41V, respectively.  相似文献   
6.
Organic solar cells (OSCs) have recently reached a remarkably high efficiency and become a promising technology for commercial application. However, OSCs with top efficiency are mostly processed by halogenated solvents and with additives that are not environmentally friendly, which hinders large-scale manufacture. In this study, high-performance tandem OSCs, based on polymer donors and two small-molecule acceptors with different bandgaps, are fabricated by solution processing with non-halogenated solvents without additive. Importantly, the two active layers developed from non-halogenated solvents show better phase segregation and charge transport properties, leading to superior performance than halogenated ones. As a result, a tandem OSC with high efficiency of up to 16.67% is obtained, showing unique advantages in future massive production.  相似文献   
7.
In this paper, Zn-doped VO2 nanoparticles have been successfully fabricated by a two-step hydrothermal-annealing process, and the thermally induced visible light transmittance enhancement of Zn-doped VO2 has been studied for the first time. It is found that Zn-doped VO2 not only exhibits excellent solar modulation ability (ΔTsol = 15.27%) but also can reduce the phase transition temperature and increase the visible light transmittance after the heat-induced phase transition (ΔTlum=+5.78%). Moreover, with the increase of Zn doping concentration, the phase transition temperature (Tc) and phase transition hysteresis (ΔT) both decrease. It is shown that the Zn-doped VO2-PU films not only have good solar light modulation ability and properties of improving visible light transmission after phase transition, but also have good durability. The research result is of great significance for improving the visible light transmittance after phase transition and realizing the practical application of VO2 in the field of smart windows.  相似文献   
8.
Ending group halogenation is an effective strategy for modulating the energy levels, bandgaps, and intermolecular interactions of nonfullerene acceptors. Understanding the influence of different halogen atoms on the acceptor properties is of great importance for designing high-performance nonfullerene acceptors. Here, three acceptor–donor–acceptor (A-D-A) type nonfullerene acceptors (M5, M6, and M7), which are constructed by using a ladder-type heteroheptacene core without the traditional sp3 carbon-bonded side chains as the electron-rich core, and 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile without or with halogen atoms as the ending groups. The nonfullerene acceptors with chlorinated (M6) and brominated (M7) ending groups exhibit broadened absorption spectra, down-shifted energy levels, and enhanced molecular ordering compared to the counterpart without any halogenated ending groups (M5). Among the nonfullerene acceptors, M6 has the strongest intermolecular π π interaction with its shortest π π interaction distance and the longest coherent length which are beneficial for enhancing the charge transport and therefore boosting the photovoltaic performance. An excellent power conversion efficiency of 15.45% is achieved for the best-performing polymer solar cell based on M6. These results suggest that the halogenated ending groups are essential for high-performance heteroheptacene-based nonfullerene acceptors considering their simultaneous enhancements in both the light-harvesting and the charge transport.  相似文献   
9.
A cheap and commercially available small molecule (namely EPPDI) is introduced to the active layer of N2200-based all polymer solar cells as a solid additive. EPPDI at the optimal ratio can improve the D-A nano-scale morphology and reduce trap density of the active layer by filling morphological spaces. As a result, the photovoltaic performance of the resulting devices based on PF2:N2200 are increased from 6.28% to 7.03% with significantly enhanced fill factor. This work demonstrates a facile approach for improving the performance of all polymer solar cells.  相似文献   
10.
The long-underestimated role of extracellular vesicles in cancer is now reconsidered worldwide by basic and clinical scientists, who recently highlighted novel and crucial activities of these moieties. Extracellular vesicles are now considered as king transporters of specific cargoes, including molecular components of parent cells, thus mediating a wide variety of cellular activities both in normal and neoplastic tissues. Here, we discuss the multifunctional activities and underlying mechanisms of extracellular vesicles in neuroblastoma, the most frequent common extra-cranial tumor in childhood. The ability of extracellular vesicles to cross-talk with different cells in the tumor microenvironment and to modulate an anti-tumor immune response, tumorigenesis, tumor growth, metastasis and drug resistance will be pinpointed in detail. The results obtained on the role of extracellular vesicles may represent a panel of suggestions potentially useful in practice, due to their involvement in the response to chemotherapy, and, moreover, their ability to predict resistance to standard therapies—all issues of clinical relevance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号